Advancing the Implementation of Hydrologic Models Through Automated Data Preparation Approaches

2000

Bioretention Done Right 0.25 CEUs/2.5 PDHs

Doug Beyerlein Co-Founder, Clear Creek Solutions This course will discuss how bioretention systems are designed, how different engineered soil media impact the movement of stormwater runoff through the engineered soil layers, and how this is typically modeled. Modeling assumptions, good and bad, will be identified along with their potential impact on bioretention facility sizing and effectiveness in providing water quality treatment.

Prasanna Dahal

M.S., P.E.

Project Engineer

Sunrise Engineering Inc.

pdahal@sunrise-eng.com

Learning Objectives

- Learn a mindset of automating data preparation processes for common modeling tasks
- Learn programmatic access to public data source
- Learn power of open source platforms such as Python and R to pre-process dataset

Sections

- Introduction / Background
- Digital Mindset
- Data Acquisition
- Data Cleaning
- Conclusion

- Importance of H/H modeling
- > Challenges in H/H modeling (data aspect)
- > Automation: A better approach to tackle existing challenges

Deeper understanding of hydrologic process is imperative to solve water related problems and to better plan and manage city water infrastructure. Advanced computer models are essential in helping us understand such relationships. However, preparing such models requires huge investment of time and resources, much of which are concentrated on acquisition and curation of data.

What do Models do?

 Try to capture physical process for further analysis

<u>Why do we model?</u> Analyze or predict scenarios like floods and droughts How changes today impact in the future

Additional Challenges	
Demands wide skill set	
Machine dependencies	NOT POSSIBLE It works on my Machine!
Prone to errors	File "test.txt" does not exist!
Distraction to main analysis	tor the family or family or family

- Use of computer simulations for modeling environmental system has been around for a long time.
- Rise of Cyber-Infrastructure (CI) has made use of computer to solve problems even more relevant.
- 'Model as a Service' vision.
- > We are headed towards web based modeling solutions

Section2: Digital mindset

There is an ongoing Digital trend.

- > Improved Digital Infrastructure
 - Increased digitization
 - ➢ GIS Vs PDF contour maps etc.
 - Increased GIS leads to advanced APIs
 - > FOSS scientific computing with huge community of developers (Python/R,)
 - Google earth engine
- > Advantage over legacy approach: Faster, Reliable
- > We need to leverage increased digitization for data acquisition,

Section2: Digital mindset

- > There is an ongoing digital trend.
 - Bigger consulting companies adopting it
 - Smart cities
 - Google earth engine
- Improved digital infrastructure has resulted in ever improving increased digitization

Land Use/Land Cover Data

 National Land Cover Dataset. <u>https://viewer.nationalmap.gov/basic/</u> and Multi-Resolution Land Characteristics Consortium (MRLC). <u>http://www.mrlc.gov/</u>
 National Land Cover Institute <u>http://landcover.usgs.gov/</u>
 Land Cover Change 2001 to 2006 to 2011<u>http://www.mrlc.gov/nlcdrlc.php</u>
 National Wetlands Inventory Center <u>http://www.fws.gov/wetlands/</u>

Water Resources Maps and GIS Information <u>http://water.usgs.gov/maps.html</u>. This site is a listing data sources with map data from the USGS or organizations connected with the USGS.

Climate and weather

Climate.gov maps: http://www.climate.gov/maps-data National Centers for Environmental Information https://www.ncei.noaa.gov/ USDA Agricultural Applied Climate Information System http://www.wcc.nrcs.usda.gov/climate/index.html PRISM Climate Group Oregon State University http://prism.oregonstate.edu/ DayMET http://daymet.ornl.gov/ Gridded daily precipitation and temperature on a 1 km grid. Nexrad radar data (including precipitation) https://gis.ncdc.noaa.gov/maps/ncei/radar NRCS National Water and Climate Center http://www.wcc.nrcs.usda.gov/ that includes water supply forecasts, snow, precipitation and temperature. SNOTEL http://www.wcc.nrcs.usda.gov/snotel/ real time snow data US Drought Portal http://www.drought.gov/

Water Resources

USGS National Water Information System http://water.usgs.gov/usa/nwis/ Real Time USGS Data on Water Watch http://water.usgs.gov/nwis/rt CUAHSI Data Services http://water.usgs.gov/nwis/rt CUAHSI Data Services http://water.wowd.advancedHydrologic Prediction Service <a href="http://water.wowd.advancedHydrologi

National Water Model http://water.noaa.gov/about/nwm. http://water.noaa.gov/map

WHY ARE TECH GIANTS BUILDING CITIES?

FRIDAY, AUGUST 14, 2020

H LIST SHARE

Author | Eduardo Brav

Tech giants such as Google, Amazon, Microsoft, Toshiba or Cisco are building smart cities in various parts of the world. This decision may come as a surprise to some however, it is related to their core business from the very moment smart cities incorporate many of the technology advancements developed by these companies.

Section2: Digital mindset

- Different levels of Automation possible,
 - Depends on
 - Software availability
 - Platform supports
 - Time availability
 - End-to-end modeling services have been implemented: RHESSys, My Thesis?

- Some important sources of data
- Examples/Demo: call from Python/R
- Code walk-throughs

https://thredds.daac.ornl.gov/thredds/ncss/ornldaac/1328/2020/daymet v3 srad 2020 na.nc4?v ar=lat&var=lon&var=srad&north=44.9&west=89.454&east=89.5&south=44.47&disableProjSubset=on& horizStride=1&time_start=2020-01-01T12:00:00Z&time_end=2020-12-30T12:00:00Z&timeStride=1&accept=netcdf

UNIVERS

Imports		import requests				
Inputs (area a	and date)	list_of_years = [2015, 2016, 2020] west, east, south, north = 89.454, 89.50, 44.47, 44.9				
n a loop so multiple files can be requested at		<pre>for year in list_of_years: for var in ['tmin', 'tmax', 'prcp', 'vp', 'srad']: str = '<u>https://thredds.daac.ornl.gov/thredds/ncss/ornldaac/1328/%s/daymet_v3_%s_%s_na.nc4</u>?' \ 'var=lat&var=lon&var=%s&north=%s&west=%s&south=%s&disableProjSubset=on&horizStride' \ 'var=lat&ime_start=%s-01-01T12:00:00Z&time_end=%s-12-30T12:00:00Z&timeStride=1&accept=netcdf'\ %(year,var,year_,var,north, west, east, south, year, year)</pre>				
nce	Write request to file	<pre>response = requests.get(str) if response.status_code == 200: res = response.content f = open ('./%s_%s.nc'%(var, year), 'wb') f.write(res) f.close() </pre>				

```
from climata.usgs import DailyValueIO
import pandas as pd
```

set parameters

nyears = 10 ndays = 365 * nyears station_id = "06730200" param_id = "00060"

INPUTS

datelist = pd.date_range(end=pd.datetime.today(), periods=ndays).tolist()
data = DailyValueIO(
 start_date=datelist[0],

end_date=datelist[-1],
station=station_id,
parameter=param_id,

)

for series in data: flow = [r[1] for r in series.data] dates = [r[0] for r in series.data] data_df = pd.DataFrame({'Date':dates, 'Flow':flow}) print (data_df)

	Date	Flow	
0	2011-12-05	6.66	
1	2011-12-06	7.23	
2	2011-12-07	8.78	
3	2011-12-08	9.62	
4	2011-12-09	8.37	
3643	2021-11-25	6.90	
3644	2021-11-26	6.21	
3645	2021-11-27	6.04	
3646	2021-11-28	4.57	
3647	2021-11-29	7.24	

Moral of the story:

It gets easier with help from active community and established package

[3648 rows x 2 columns]

Data Sources

National/State/Global Data repositories

- Hydrography
- USGS National Water Information System
- Land Cover
- Census
- Elevation
- Soil (STATSGO/SSURGO)
- Weather

National STATSGO Database USDA-NRCS Soil Survey Division Data Access 1:250,000 Scale Soil Information

🖃 🥌 Layers

🖃 🗹 gsmsoilmu_a_ut

MUSYM s1159 s1160 **s1161** s1185 s1186 s1199 s1210 s1232 s1417 s1420 s1422 s1424 s1435 s1436 s1437 s1778 📃 s1791 s1811 s1815 s1826 s1834 s1836 s1844 s1846 s1975 s2168 s2179 s2180 s342 s343 s351 📃 s359 s362 s392 **s393** s394 s398 s5228 s5229 -5453

https://gdg.sc.egov.usda.gov/

http://websoilsurvey.nrcs.usda.gov/DataAvailability/SoilDataAvailabilityMap.pdf

National Land Cover Data

http://www.mrlc.gov/

The National Map

http://nationalmap.gov/

A central source for US Government data

Watershed Boundary Dataset

http://nhd.usgs.gov/wbd.html

- National Program by USGS and USDA (NRCS)
- Boundaries for 10- and 12- digit watersheds
- First cut is by automated delineation from NED
- Hand checked and edited

Formerly the National Climatic Data Center (NCDC)... more about NCEI »

Home Climate Information Data Access Customer Support Contact About

NOAA's National Centers for Environmental Information (NCEI) is responsible for preserving, monitoring, assessing, and providing public access to the Nation's treasure of climate and historical weather data and information. Learn more about NCEI »

How may we assist you?

I want to search for data at a particular location. I want quick access to your products. I want to see your monthly climate reports. I want to find a specific dataset. I want to know about climate change and variability.

Search

Assessing the U.S. Climate in July 2016

The July temperature averaged across the contiguous United States was 75.3°F, or 1.6°F higher than the 20th century average.

1 2 3 4 5

https://www.ncei.noaa.gov/

SRTM Topographic Data (all 30m data now public for world)

IISSION | INSTRUMENT | DATA PRODUCTS | MULTIMEDIA | OUTREACH

U.S. Releases Enhanced Shuttle Land Elevation Data

On September 23, 2014, the White House announced that the highest-resolution topographic data generated from NASA's Shuttle Radar Topography Mission (SRTM) in 2000 was to be released globally by late 2015. The announcement was made at the United Nations Heads of State Climate Summit in New York. Since then the schedule was accelerated, and all global SRTM data have been released.

See the full JPL Release 2014-321.

Previously, SRTM data for regions outside the United States were sampled for public release at 3 arc-seconds, which is 1/1200th of a degree of latitude and longitude, or about 90 meters (295 feet). The new data have been released with a 1 arc-second, or about 30

meters (98 feet), sampling that reveals the full resolution of the original measurements.

http://www2.jpl.nasa.gov/srtm/

www.climate.gov

PRISM Mean Annual Precipitation (Oregon State U.)

Precipitation: Annual Climatology (1981-2010)

http://prism.oregonstate.edu/

American Community Survey

- Source of detailed demographic and housing characteristics, including:
 - Income
 - Language spoken at home
 - Educational attainment
 - Occupation
 - Place of work and journey to work
- Data collected annually from approximately 3 million households per year. Approximately 250,000 households per month.
- Data collected throughout the year—produces period estimates rather than point estimates.

	ACS 1-Year Data	ACS 3-Year Data	ACS 5-Year Data
Geographic Areas	65,000 or more population	20,000 or more population	All areas, block group or higher

National Water Information System

http://waterdata.usgs.gov/usa/nwis/

USGS Water Watch

Web access to USGS water resources data in real time

http://waterdata.usgs.gov/nwis/rt

USGS National Water Information System
<u>http://water.usgs.gov</u>

- Real-time and Historic Data
 - Streamflow and stage
 - Groundwater levels
 - Water Quality
 - Site information

• Tabular or Graphical Format

agency_cd		site_no	dv_dt	dv_va
5s	15s	10d	12n	3s
USGS	08158000	1999-01-3	24	152
USGS	08158000	1999-01-3	25	333
USGS	08158000	1999-01-2	26	1180
USGS	08158000	1999-01-2	27	1160
USGS	08158000	1999-01-2	28	1030
USGS	08158000	1999-01-2	29	184
USGS	08158000	1999-01-3	30	151
USGS	08158000	1999-01-3	31	158
USGS	08158000	1999-02-0	01	150
USGS	08158000	1999-02-0	02	152
USGS	08158000	1999-02-0	33	154
USGS	08158000	1999-02-0	04	155

ArcGIS Online: Living Atlas

esri ArcGIS	Industries About	Support					±	Sign In	English∨
Iving	Atlas of the World	Home	Browse	Benefits	Apps	Blog	My Contributic	ons	My Favorites
Filters: All Content Ty	ypes 🗸 🛛 All Time 🗸	All Regio	ons 🗸 🗌]Esri-only Co	ontent			Sort by:	Relevance 🗸
III II I									72 Results
	National Weather Ser Map Image Layer By: e Precipitation forecast for the Continental United States. required.	rvice Precipitati sri ne next 72 hours ac ArcGIS Online sub	on For cross the pscription	1 4'. 14'. 14'.	1 - A - A - A - A - A - A - A - A - A -	Surface M Map Ima Maps displa estimates fr 6, 12, 24, 4	Aeteorological a age Layer By: NOA/ aying the latest quar rom NOAA/OAR/NS 8, and 72-hour accu	nd Hydr A.GeoPlatf ntitative pr SSL MRMS imulation p	orm recipitation System for 1, 3, periods.
Q Subscriber			\$ ☆ …						\$ ☆ …
Arabian Sea	GLDAS Precipitation	2000 - Present	y by NASA	-lotte	Richmond	National Web Ma Predicted p Continenta	Weather Service ap By: esri_livefeeds precipitation for the I United States	3 72 Hou ; next 72 hc	ur Precipit

CUAHSI HydroClient <u>http://data.cuahsi.org</u> Query for Streamflow Data in Houston area

Use of advanced Python/R packages to preand post-process dataset

Example:
SSURGO,
rain/ET,

Save data to HydroShare

Code walk-throughs

Evapotranspiration

Module also available for estimating values Examples:

avp = fao.avp_from_tdew(tdew)
avp = fao.avp_from_twet_tdry(twet, tdry, svp_twet, psy_const)

Expanding upon the idea, we could use the spatially distributed data downloaded earlier, and prepare a comprehensive spatially and temporally distributed Reference ET maps for any AOI

Code available at: https://github.com/prasanna310/hydrodsdev/blob/master/pytopkapi_data_service/servicefunctions_pytopkapi.py

Similarly, another example would be preparing soil datasets on the fly after requesting data from NRCS

Code available at: https://github.com/prasanna310/hydrodsdev/blob/master/pytopkapi_data_service/Extract_Soil_Data_pytopkapi5.r

Section5: Results & Conclusion

- A digital mindset to use advancing computer infrastructure key in engineering things faster and reliable
- Explored and identified benefits in use of computing resources for
 - data download
 - data pre & post processing
- Faster, reliable approach used to get most upto-date data (including real time data)

Your Feedback Is Important

Please send us your questions, comments, concerns, etc at support@stormwateruniv.com

Presentation PDF Available

Downloadable from the Chat area of the Zoom platform and the course page at stormwateruniv.com

Recording Available

Within 48 hours on the course page at stormwateruniv.com

Certificates

Will receive email notification within 48 hours. Must have attended full session.

Prasanna Dahal

M.S., P.E.

Project Engineer

Sunrise Engineering Inc.

pdahal@sunrise-eng.com

Job Site Management Series: Soil Stabilization, Flocculant Applications, Winter Preparation 0.3 CEUs/3 PDHs

Pete Hanrahan Hanrahan Environmental

20% Savings Bundle on:

- Erosion Control and Ground Stabilization in the Third Dimension
 - Flocculant Applications in Soil Stabilization
- Preparing Construction Sites for Winter Shutdown

